Chain Hexagonal Cacti with the Extremal Eccentric Distance Sum
نویسندگان
چکیده
منابع مشابه
Chain Hexagonal Cacti with the Extremal Eccentric Distance Sum
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
متن کاملChain hexagonal cacti: extremal with respect to the eccentric connectivity index
In this paper we present explicit formulas for the eccentric connectivity index of three classes of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with respect to the eccentric connectivity index belong to one of the considered types. Some open problems and possible directions of further research are mentioned in the concluding section.
متن کاملchain hexagonal cacti: extremal with respect to the eccentric connectivity index
in this paper we present explicit formulas for the eccentric connectivity index of three classesof chain hexagonal cacti. further, it is shown that the extremal chain hexagonal cacti withrespect to the eccentric connectivity index belong to one of the considered types. some openproblems and possible directions of further research are mentioned in the concluding section.
متن کاملExtremal values on the eccentric distance sum of trees
Abstract: Let G = (VG, EG) be a simple connected graph. The eccentric distance sum of G is defined as ξ(G) = ∑ v∈VG εG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) = ∑ u∈VG dG(u, v) is the sum of all distances from the vertex v. In this paper the tree among n-vertex trees with domination number γ having the minimal eccentric distance sum is determined and the tree among n-...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/897918